Effect of specimen geometry and orientation on tensile properties of Ti-6Al-4V manufactured by electron beam powder bed fusion

نویسندگان

چکیده

Tensile testing is often proposed as the preferred methodology to qualify builds and materials produced through additive manufacturing. While there already work demonstrating difference in measured properties between tensile specimens different build orientations, this does not extend specimen geometries. In addition, body of knowledge domain typically made up studies that utilize custom combinations geometries, part finishing, post-processing, making it challenging compare results. To study impact geometry on results, a selection standard types provided ASTM E8/E8M was prepared Ti-6Al-4V using an electron beam powder bed fusion manufacturing machine. These were characterized observe any porosity defects, dimensional deviations, surface topography could performance. It found changes geometry, size, orientation, internal porous defects; have significant effects specimens. The horizontally built had higher yield strengths, but lower elongation compared vertically With increase cross-sectional area, yield, strength, elastic modulus observed. area volume ratio, decrease strength. average solid fraction no influence properties. Furthermore, with maximum pore decreased.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Laser powder bed fusion of Ti-6Al-4V parts: Thermal modeling and mechanical implications

A continuum-scale modeling approach is developed and employed with three-dimensional finite element analysis (FEA), for simulating the temperature response of a Ti-6Al-4V, two-layered parallelepiped with dimensions of 10×5×0.06 mm during Laser Powder Bed Fusion (L-PBF), a metals additive manufacturing (AM) method. The model has been validated using experimental melt pool measurements from the l...

متن کامل

Effects of Processing Parameters on Surface Roughness of Additive Manufactured Ti-6Al-4V via Electron Beam Melting

As one of the powder bed fusion additive manufacturing technologies, electron beam melting (EBM) is gaining more and more attention due to its near-net-shape production capacity with low residual stress and good mechanical properties. These characteristics also allow EBM built parts to be used as produced without post-processing. However, the as-built rough surface introduces a detrimental infl...

متن کامل

Tensile fracture during transformation superplasticity of Ti–6Al–4V

During thermal cycling through the a–b phase transformation under the action of a small external biasing stress, Ti alloys exhibit an average deformation stress exponent of unity and achieve superplastic strains. We report tensile experiments on Ti–6Al–4V with an applied stress of 4.5 MPa, aimed at understanding the failure processes during transformation superplasticity. The development of cav...

متن کامل

Laser Powder Cladding of Ti-6Al-4V α/β Alloy

Laser cladding process was performed on a commercial Ti-6Al-4V (α + β) titanium alloy by means of tungsten carbide-nickel based alloy powder blend. Nd:YAG laser with a 2.2-KW continuous wave was used with coaxial jet nozzle coupled with a standard powder feeding system. Four-track deposition of a blended powder consisting of 60 wt % tungsten carbide (WC) and 40 wt % NiCrBSi was successfully mad...

متن کامل

Corrosion resistance of Ti-6Al-4V and ASTM F75 alloys processed by electron beam melting

The electron beam melting (EBM) is a useful technique for fabricating alloys that are difficult to machine and require expensive tools as well as the presence of inert atmosphere for further treatments. Under vacuum, EBM provides a controlled environment, reducing the drawbacks of the alloys of their processing in a conventional manner and thereby improving their microstructure, which can enhan...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Additive manufacturing

سال: 2021

ISSN: ['2214-8604', '2214-7810']

DOI: https://doi.org/10.1016/j.addma.2021.102366